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PERMANENCE OF THREE COMPETITORS IN
SEASONAL ECOLOGICAL MODELS WITH
SPATIAL HETEROGENEITY

ERIC JOSE AVILA-VALES AND ROBERT STEPHEN CANTRELL

ABSTRACT. We obtain conditions for permanence in a
reaction-diffusion system modelling the interaction of three
competing species in a bounded habitat whose exterior is
lethal to each species under the assumption that the local
inter- and intraspecific interactions are temporally periodic.
Our results are based upon the Hale-Waltman acyclicity the-
orem, a skew-product flow approach having been employed to
convert the reaction-diffusion system into a continuous time
semi-dynamical system. The conditions we derive all are ex-
pressed in terms of the sign of the principal eigenvalue for cer-
tain associated periodic-parabolic linear operators and may
be interpreted biologically as invasibility conditions.

1. Introduction. In the study of any population dynamical model
of interacting species, a natural and fundamental question is whether or
not the model predicts the long term survival of each of the interacting
species. Implicit in this question is another related question: just what
is meant by “long term survival” of a species in such a model? This
second question has been at the heart of numerous recent analyses
of population dynamical models in various contexts, see, e.g., [7, 8,
12, 16, 17, 20] and references therein, and a consensus answer has
emerged, reflecting the twin imperatives of biological interpretability
and mathematical tractability. Namely, there should be a “positive
threshold” with the property that any positive initial state for the
model eventually will evolve to a state exceeding the threshold and
thereafter remain above the threshold. This concept is usually referred
to as uniform persistence.

To be more specific about what constitutes a “positive threshold”
requires a particular modelling context. In this article, the context is
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that of competition models for three interacting species via reaction-
diffusion equations on a bounded spatial domain, supplemented by
absorbing, i.e., homogeneous Dirichlet, boundary data. The basic
biological interpretation for such models is that three competing species
share a common habitat patch, denoted €2, which is surrounded by a
lethal exterior. The states of the model are denoted u;, uz and us,
where u;(z,t) expresses the population density of the ith species at
locale z and time ¢t. Uniform persistence in this context requires the
existence of functions Uy, Us, Us on Q with

Ui>0 in(}
U;=0 ondQd
VU; n<0 ondQ

for ¢ = 1,2, 3, where 7 is a unit outer normal vector to 9%, to serve as
the threshold. Namely, for any initial data

(u1(z,0), uz2(z,0), us(z,0)) with ui(:z:,O)';O,

the correspondmg solution (u1 (z,t), uz (:1: t), u3 (a: t)) is requlred to sat~
mfy wz\.b b} = {/rz(.p} un $ uuve o / ou\ul\w,U/, wz\.o,u;, u',_«;\.o, C)}
If, additionally, there are fixed positive constants Vj, Vs, V3 so that
u;(z,t) < V; once t > to(u1(z,0),ua(z,0), us(z,0)), the system is said
to be permanent. Clearly, permanence implies uniform persistence and
is in general a stronger requirement. However, the models we consider
are regulated by intraspecific as well as interspecific competition. Con-
sequently, the densities of the component species of the system have
asymptotic upper bounds; i.e., the system is dissipative. As a result,
in this setting, permanence. is more or less tantamount to uniform per-
sistence, and we elect to use the more descriptive term.

The most salient feature of the models we consider is that the local
interaction terms are both spatially heterogeneous and temporally pe-
riodic. Spatial heterogeneity and/or temporal periodicity have figured
prominently in several preceding studies (of reaction-diffusion models)
which have informed and influenced our current efforts. Hess and Lazer
[14, 15] allowed both spatial heterogeneity and temporal periodicity
in their studies of reaction-diffusion models for two competing species.
Solution trajectories for such models respect the ordering of state space
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given by (u3,v1) < (ug,vq) if and only if u; < ug and v; > vp. Hess
and Lazer exploited this ordering to examine the models via the theory
of discrete dynamical systems. They found conditions under which the
model exhibits a particularly nice form of permanence, namely that
solution trajectories evolve toward a periodically varying family of or-
der intervals. They called this property compressivity. Compressivity
techniques apply whether absorbing or reflecting, i.e., homogeneous
Neumann, boundary data are assumed. However, the requirement that
solution trajectories respect an ordering of state space means that com-
pressivity techniques alone cannot be used to analyze a three species
competition system. Consequently, we employ a continuous time semi-
dynamical system to reformulate our model so as to access the perma-
nence literature to obtain reasonable sufficient conditions for long term
coexistence of the component species of our model. This approach
was used by Cantrell, Cosner and Hutson in [5] to analyze the gen-
eral two-species reaction-diffusion models with absorbing or reflecting
boundary data under the assumption that the local interaction terms
are spatially heterogeneous but independent of time, and in [6] to treat
certain three-species competition and predator-prey systems having lo-
cal interaction terms of constant coefficient Lotka-Volterra type. Con-
verting reaction-diffusion models to semi-dynamical systems is made
substantially more difficult by the introduction of temporal periodicity
into the model. Hutson and Zhao demonstrated in [18] how to adapt
the reformulation approach of [5] to reaction-diffusion models with tem-
poral periodicity as well as spatial heterogeneity in the reaction terms
in the case of reflecting boundary data by utilizing the concept of a
skew-product flow [22]. In [1] and [2] we modified the results of [18] so
that such reaction-diffusion models with absorbing boundary data can
be reformulated as semi-dynamical systems.

Once we reformulate the model as a semi-dynamical system w, we
show that = is permanent according to a dynamical systems defini-
tion. It then follows as in [1] or [2] that the model is permanent in the
sense previously described. To show that 7 is permanent we invoke the
Hale-Waltman acyclicity theorem [11]. The sufficient conditions for
permanence that we obtain are expressed in terms of the negativity of
the principal eigenvalues for certain related periodic-parabolic differen-
tial operators. (Such conditions have a natural biological interpretation
as conditions for invasibility, a point we amplify at a suitable moment
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in our exposition.) Somewhat similar conditions for permanence in
reaction-diffusion models of n competing species, reaction terms again
spatially heterogeneous and temporally periodic, are given by Cantrell
and Cosner in [4] for the case of absorbing boundary data and by Zhao
in [23] for the case of reflecting boundary data. Both [4] and [23] rely
primarily on comparison principles for single reaction-diffusion equa-
tions to obtain asymptotic lower bounds on the components of the
system. Our conditions for permanence for the three species case are
somewhat less restrictive than those of either of the two other studies
when n = 3. The basic reason is that compressivity techniques are
applicable to the study of the subsystems which arise when one species
is absent when n = 3 but not for general n.

i £, a 0 . - il n 4l
The remainder of this article is as follows. In Section 2 we describe t (9L

reaction-diffusion model, show how to convert it to a semi-dynamical
system 7 and discuss the Hale-Waltman acyclicity theorem. In Sec-
tion 3 we analyze the subsystems of the model which arise when one
or two species are absent from the model. Our main permanence re-
sults are given in Section 4. Finally, in Section 5 we extend a result
of Fan and Leung [10] on the local asymptotic stability of componen-
twise positive periodic solutions to reaction-diffusion models for two
competing species to situations in which the reaction terms are spa-
lially UCLGIUBCLOUUS Gul LoiipUlally poiivdit. 1u su duing, we ubbalu
conditions under which solutions to the two-species subsystems of the
model evolve to a componentwise positive periodic orbit, prov1d1ng an
additional refinement of the results of Section 4.

2. Set-up and preliminaries. Consider the system

0
——6?% = dlAul + u1f1(l‘,t, ’u,l,'ll.g,U3)
du

(2.1) —672 = dyAug + ua fo(x, 2, u1, u2, us)
0
--g.llt-g. = d3A'U,3 + uafa(x,t,u11u21u3)

in 2 x (0,00), subject to the condition

(2.2) u; =0
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on 852 x (0, 00) for i = 1,2,3, where Q is a sufficiently smooth bounded
domain in R™. Assume

(H1) d;>0 fori=1,2,3.
(H2) fi € C¥*/22(Q x R x R3)
fori=1,2,3, wherea € (0,1).
(H3) fi(z,t + Tyuy, uz,us) = fi(z,t,u1,uz,u3)
for x € 9, ;>0 and teR, fori=12,3.
(H4) -g-% <0 ford,j=1,23.
(H5) fi(2i,%:,0,0,0) >0 for some z; € Q

and t; € (0,T), fori=1,2,3.

There exist Ky, Kz, K3 > 0 so that

(H6)

fl(x,t,u1,0,0)<0 ifu; > Ky
fZ(iU,t,O,‘le,O) <0 ifug > Ky
fa(z,£,0,0,u3) <0 ifuz > Kj

for any z € Q and ¢ € [0, 7).

Now let @ = (u1,uz,us) € [C*(Q)]? and t; € [0,00]. Denote by
¢(i, to, t) the unique solution to (2.1)—(2.2) satisfying ¢(, to, o) = .
(Here ¢ = (¢1,¢2,¢3).) Let S* be parametrized by P, = 27/,
7 € R*. Then, as in [1] or [2], (H1)}-(H3) imply that the map
7 : [C3, ()2 x S x [0,00) = [C3,.(R)]® x S given by

W(ﬁ, P’rvt) = (d’(ﬂ’ T, T+ t)7PT+¢)

is a semiflow, where by [C},(f)]> we mean the cone consisting of
triples of nonnegative C! functions on © which vanish on 09. Hence
(2.1)~(2.2) can be reformulated as a semi-dynamical system. (See also
[18, 22].) Hypotheses (H4)-(H6) imply, again as in [1] or [2], that
there is an M > 0 so that ||¢(u,7,t)|| < M for t > t(u,T), where || - ||
denotes the norm in [C1(R)]3. It follows from this observation that
there is a bounded attracting set for the semiflow =, i.e., 7 is point
dissipative. Moreover, 7(-,t) is a compact mapping on [C3, (22)])® x S*
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for any ¢ > 0. (See [1, 2] again, and also [5, 13].) By a result of Bilotti
and LaSalle [3], these two properties of 7 are sufficient to guarantee
the existence of a global attractor for , i.e., a compact set .A, invariant
under 7, such that for any bounded subset V of [C}, ()] x S?,

hm{ sup d(w(u, Pr,t),A)} =0,

t—00 "y P eV

where d denotes the metric in [C}, ()] x S*. Consequently, we may

restrict our attention to X = w(B(A,¢€),[to,00)), where B(A,¢) is
an e-neighborhood of A in [C},(Q)]® x S! and tp > 0. It follows
as in [1] or [2] that X is compact and positively invariant under
7. Since = is continuous, the same is true for X = n(X,t') where
¢ > 0. X can be written X = (X U {int ((C}@)]?) x ST U (X n
{6([Co+(ﬂ)] ) x S'}), both of which are positively invariant under 7.
Let S = X n{8([CL.(M)]®) x §'} = X n 6{[Co+(§2)] x S'}. We say
7 is permanent provided that there is a subset & of X — S so that
inf , pyen (v, Pr),8) > 0 and limye0 d(m(x, P.,t),l) = 0 for all

(u,P;)e X -8.

As noted in the introduction, = being permanent by the definition
above implies that (2.1) is permanent under the criteria given in the
introduction. To establish that 7 is permanent, we employ the Hale-
Waltman acyclicity theorem [11]. The acyclicity theorem applies to a
point dissipative semiflow 7 with the property that (-, t) is compact
for t > 0 (such as ours) when there is a certain partial knowledge of
the geometry of the semiflow in the interior at a distinguished set in
a complete metric space. In our case, [C},(0)]® x S* is the complete
metric space, X the distinguished set, and X — & its interior. The
partial knowledge needed for a determination of permanence by the
acyclicity theorem is expressed in terms of the omega limit set w(S)
of the boundary S of X where, for our purposes, w(S) is defined in
a nonstandard manner as Uy, pf)esw((u P;)). First of all, w(S) must
have an isolated covering, by which we mean that it can be written as
U,’i=1Mn, where the M, are pairwise disjoint compact isolated invariant
sets, each of which is isolated both for 7 and its restriction 7y to
S. Secondly, w(S) must be acyclic, meaning there is no subcollection
{Mn1,... ,Mp,} of {My,..., M} which is chained together by the
semiflow m in the sense that M, = M,,, and for eachi € {1,... ,r—1}
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there is u € S — (My, U My,,,) so that u.€ W*(My,,) N W*(M,,,,),
where W*(M,,) is the unstable manifold of My, and W*(M,,,) is the
stable manifold of My, ,,. Then the Hale-Waltman acyeclicity theorem

asserts that if w(8) is isolated and acyclic, 7 is permanent provided
WM )N(X -8)=¢forn=1,...,k.

Summarizing, in the context of (2.1)—(2.2), subject to (H1)-(HS6),
the Hale-Waltman acyclicity theorem may be stated as follows: 7 is
permanent provided that w(S) has an acyclic isolated covering uk_ M,
with the property that We(M,)N (X —S)=¢ forn =1,... ,k. This
last condition is that 7 is unstable at M, with respect to the interior
of the distinguished set X.

In order to apply the Hale-Waltman result, we must

(i) find a candidate for the covering, i.e., identify M, ..., Mk;
(i) verify the acyclicity and isolatedness of the covering;
(iii) establish the required instability conditions.

We essentially perform (i) in the next section. The acyclicity will
follow immediately, and we obtain the isolatedness by showing each
M., has a neighborhood which contains no full orbit for = distinct from
My,. The instability condition at My will be a consequence of showing
that in X — S near M, at least one of the population densities evolves
in time away from M,. In biological terms, M, is invasible by the
species in question.

3. . Analysis of subsystems. The sets M, necessarily lie in
8([C2, (M)]3) x 8. It follows from the construction of X and the strong
maximum principle that if (u, P;) = (uy,uz, us, Pr) € My, then u; =0
for at least one i € {1,2,3}. Consequently, in order to employ the
acyclicity theorem to assert that m is permanent, consideration must be
given to the one and two equation subsystems of (2.1) arising from the
assumption that some u; = 0. Here our analysis is greatly facilitated by
the theory of periodic-parabolic boundary value problems as developed
by Hess, Lazer and others and recorded in [14, 15, 19] among other
sources. (See [14] for a rather complete treatment with a substantial
list of references.)

The fundamental observation underlying the theory of periodic-
parabolic boundary value problems is that of Lazer [19] that the eigen-
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value problem

ov - .
(3.1) 5~ - flmthy=p nQxR
v=0 ondd xR

has a unique eigenvalue p (necessarily real) admitting an eigenfunction
v which is positive on 2 x R and T-periodic in ¢, so long as the reaction
coefficient f is of class C**/2({} x R) for some a € (0,1) and is T-

periodic in ¢. The asymptotic behavior of nonnegative solutions to

du )

(3.2) 5t dAu +uf(z,t,u) in Q x (0,00)
u=0 ordN x (0,00)

is consequently determined so long as (H1)-(H6) hold. In particular,
it is shown in [14] that (3.2) admits a unique globally attracting T-
periodic positive solution % provided p < 0 in (3.1) with f(z,t) =
f(z,t,0) and that all nonnegative solutions to (3.2) converge uniformly
to0on Qast— coif u>0in (3.1).

It is clear that the restriction of (2.1) arising under the assumption
that two of the u;'s vanish identically is of the form (3.2). Conse-
quently, we may identify some of the 1solat:ed invariant sets M, by

....... Ll O ON 2k e et AL 1t 1 [33] 1" -
WASLLY UL URALEy (WA [ RAUV W uuun—uJ xxuxaxxvas D.ycwcuz \vv.un.,u YT YWl Ll L

convenience) and finding w((ug, Pr,)). We have the following result.

Lemma 3.1. Ifug ; 0 and (u, P;) € w((uo, Pr,)), then
(i) u(z) = a(z,7) if p < 0 in (3.1);
(i) uw(z) =0 4f > 0 in (3.1).

Proof. (ii) is evident from the preceding observations so we shall show
only (i). Let us first show that we may assume 75 = 0. There exist
{tn} — +o0 so that

(v, Prgytn) — (u, Pr) asn — co.
Ift, > T -,

W(UO’ PTO’t'") = W(W(umPTo:T - TO)ytn - (T - 7'0))
= (o, Po, tn — (T = 7)) '
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and t, — (T'— 79) — 00 as n — 00.

So let us now assume 79 = 0. For t > 0, let [[t]] = kT, where kT <
t < (k 4+ 1)T. Notice that m(uo, Po,tn) = m(m(uo, Po, [[ta]])s tn — [[t=]])
and that if [[t,])] = kT, m(uo, Po, [[ta]]) = (S**uo, Py), where S™ is the
nth iteration of the natural Poincaré map. By [14, Theorem 28.1],
Smug — @(x,0) as n — oo. Hence, so does S*»ug. Since £, — [[tn]]
is bounded, it must have a convergent subsequence, converging to £,
say. Continuity of 7 implies for this subsequence that w(ug, Po,tn) —
n(a(z,0), Py, ) = (i(z, %), F;). Consequently, 7 =t and u(z) = 4(z, )
as required. o

When (2.1) is restricted by the assumption that one of the u;’s
vanishes, there arises a two species competition system of the form

%’% = DlA'LL'i‘Uf(x)tv u, w)

(3’3) ?61;)- = D2Aw -+ wg(m7t7 U, w)

in © % (0, 00)

u=0=w ond x (0,00),

with (H1)-(H6) holding. Solution trajectories to such systems preserve
the order relation on pairs (u, w) given by (u1,w;) < (ug,ws) if and only
ifu; < ug and wy > wq. This feature of (3.3) makes it possible to obtain
a particularly nice form of permanence for (3.3), called compressivity
by Hess and Lazer [15], under appropriate conditions. Specifically,
suppose first that g3 < 0 and p2 < 0 when

v
— D — -
(34) ot 1Av f(ma ¢, 0, O)'U Hiv,
v=0 ImOxR ond2xR
and
Oz
(3.5) 5 ~ D28z = g(2,4,0,0)z = poz

z=0 InOQxR ondl xR

admit positive T-periodic eigenfunctions v and z, respectively. Having
g1 <0 in (3.4) and pe < 0 in (3.5) implies that

..6.1:. = D1Au + uf(z,t,1,0) in Q2 x (0,00)

(3.6) 0
u=0 on 0 x (0,c0)
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and

?_Qtf = DoAw + wg(z,t,0,w) in 0 x (0, 00)

(8.7) 0
w=0 on N x (0,00)

admit globally attracting positive T-periodic solutions 4 and @, respec-
tively. Then suppose further that i; < 0 and fi < 0 when

0 ‘ - .
(38) '0% - D1A¢ - f(a:,t,O,LT)(m,t))qB = #1‘15 inQxR
=0 ond2 xR
and
(3.9) %% — DaAp — g(z,t,4(2,t),0)p = izp m QxR

p=0 ond xR

admit positive T-periodic eigenfunctions ¢ and p, respectively. Then
there are componentwise positive and T-periodic solutions (u,w) and
(@, w) to (3.3) with (u(-,0),w(-,0)) < (@(,0),®(-,0)) (and hence
(u(:,t),w(:,t)) < (a(-,¢),w(-,¢t)) for all ¢ > 0) so that, for any initial
> >

data (ug, wo) wWith ug 3 U, wp # 0, S™((ug, wo)) converges to the order
interval [(u(:,0),w(-,0)), (@(-,0),@(-,0))]. (For details of these results,
see [14] or [15].)

When one of the u;’s in (2.1) vanishes identically, a system of the
form (3.3) arises. We will be able to identify the remaining sets M,
from the preceding section by converting (3.3) into a semi-dynamical
system 7 and finding w((up, wo, Pr,)). We have the following result.

> >

Lemma 3.2. Suppose up # O,wg # 0 and that (u,w,P;) €
w((uo, wo, Pry)). Then if p3 < 0 in (3.4), pa < 0 in (3.5), i1 < 0
in (3.8), and fiz < 0 in (3.9), u(z,7) < u(z) < i(z,7) and W(z,7) <

w(z) < w(z, ) for all z € Q.

Proof. As in the case of the proof of Lemma 3.1, we may assume
that 7 = 0. Then there are {¢,}52; with ¢, — 0o as n — co so that
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7 (ug, wo, Po, tn) = (u,w, P;) as n — oo. Letting [[tn]] be defined as in
Lemma 3.1, we have that m(m(ug, wo, Po, [ta]]) tn — [[tal]) = (u,w, Pr)
as n -+ oo. Point dissipativity implies the boundedness of the sequence
7(uo, wo, Po, [[tn]] — T') as n — co. Consequently, n(+,T) compact im-
plies that m(ug, wo, Po, [[tx]]) has a convergent subsequence which we re-
label if need be so that w(uo, wo, Po, [[ta]]) = (v*(z), w*(x), Po). Since
S™(uo,wo) — [(E('vo)’ E{(':O))’ (a(-, 0), @(-,0))], E(z» 0) < u'(z) <

i(z,0) and @(z,0) < w*(z) < w(z,0) on Q. Continuity of 7 implies

that (u,w,P;) = m(u*,w*, Py, 7). Hence the order preserving prop-
erty of solution trajectories implies that u(z,7) < u(z) < 4(z,7) and

w(z,7) < w(z) < w(z,T), as required. O

4. Permanence results. Under assumptions (H1)-(H6), as we have
noted, (2.1) can be reformulated as a semiflow 7 on [Cj..(Q))® x S*.
We may now formulate conditions under which 7 is permanent. These
conditions all are expressed in terms of the sign of the principal
eigenvalue of problems of the form (3.1), where by principal eigenvalue
of (3.1) we mean the unique and necessarily real-valued eigenvalue of
(3.1) admitting an eigenfunction which is positive on OxRand T
periodic in t.

We first require:
(P1) The principal eigenvalue p; of

Qgi‘ - diAvi - fi(xvtao: 0’ O)Ui = [V inQxR

(4.1) ot
v, =0 ond xR

is negative for i = 1,2,3.

We know from Section 3 that if (P1) holds there is a unique globally
attracting positive T-periodic solution 4; of

Bui - .
(4.2) 5 = dibui+ filz,tudui inQx (0,00)
u; =0 on 890 x (0,00),

i = 1,2,3, where_ filz,t,u1) = fi(z,t,v1,0,0), folz, tyuz) =
fz(:v,t‘, 0, ’u,z,O) and fg(m,t,us) = f3($,t, 0, O,U3).
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We next require:

(P2) The principal eigenvalue p;; of

Ow;; . '
(4.3) "ot -5~ Aw'J fii(z, thw;; = pijwi; inQ xR

ij=0 on I xR

is negative, fori,j = 1,2, 3,1 # j, Wherefm vt) = fi(z,t,0,82(zx, t),0),
f13(:1: t) = fi(z,t, 0 0,a3(z,t)), far(z,t) = ( t, ul(m t),0,0),
foa(z,t) = fa(,t,0,0,(z, 1)), fa(z,t) = fa(z,t,@1(z,1),0,0) and
faa(z,t) = f3(2,t,0,0, 43(z, t)).

If (P1) and (P2) hold, then, in particular, we have p; < 0, up < 0,

p12 <0 and pg; < 0. It follows from Section 3 that the system

ou
—55 = d1Aug + fi(z,t,u1, u9,0)u,
(4.4) P in £2 x (0, 00)
. U
c’)t2 daAug + fa(x,t, u1, ug, 0)ug

ur =0=1uz on 92 x (0,00)

admits componentwise positive T-periodic solutions (u;(z, t), u2(z, t))
and (f1(z, t), d2(z, 1)) with u(z,t) < @1(z,t) and ua(z,t) > dy(z,t)
for £ € Q and ¢t € R. Moreover, if [v,w] denotes an order in-
terval in C3,(0), these solutions have the property that any solu-
tion (u1(z,t), uz(,t)) to (4.4) arising from componentwise nonnega-
tive nontrivial initial data is such that the distance from uy(z,t) to
the order interval [u;(z,t),; (z,t)] and the distance from uy(z, t) to

the order interval [@a(z,t), us(z,t)] both tend to zero as t tends to

infinity. Moreover, by (P1) and (P2), there are analogous pairs of
componentwise positive T-periodic solutions for each of the other two-
equation subsystems of (2.1). Let us denote them (u,(z, t), us(z, t))

and (ty(z,t),Us(z,t)) and (up(z,t),us(z,t)) and (hg(z,t), Bs(z, 1)),
respectively, where u(z,t) < Ui (z,t), ua(z,t) < Ua(z,?), us(z,t) >
%s(z,t) and ug(z,t) > us(z,t) forc € Qand t € R.
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The preceding considerations show that if (P1) and (P2) hold and
w(S) is as in Section 2, then

7
w(8) = U M,,, where

n=1
M; = {(0,0,0) x 5},
M, = {((#:(z,7),0,0), P;) : £ € Q,7 > 0},
M; = {((0,a2(z,7),0), Pr) : z € Q,7 > 0},
My = {((0,0,@3(z, 7)), Pr) : z € Q7 > 0},
My € {({(us(o,7), uz(w,7),0), (@ =, 7),
 dp(z,7),0)), Py) s w € Q7 2 0}
Ms € {([((=,7), 0, us(w, 7)), (t (2, 7),0,
Ug(e, 7))}, Pr) 1 @ € Q7 2 0}
My € {([(0, uz(2, 7), ua(z, 7)), (0, Uz(z, 7),
us(z, 7)), Pr) s z € Q,7 > 0}
Additionally, the considerations show that w(S) is, in fact, acyclic.

In order to employ the Hale-Waltman acyclicity theorem to conclude
that 7 is permanent, w(S) must satisfy the two additional criteria noted
in Section 2, namely that w(S) is isolated and that W*(M,)N(X -8) =
¢ for n=1,...,7. For such to obtain, we require:

(P3) The principal eigenvalue 7i; of

9% _ d;Az; — ?i(m,t)zi =Mz mnQxR

(4.5) ot
zz=0 ondA xR
is negative, for i = 1,2, 3, where
fl(ma t) = fl(mx t, Oa Z2(:1:) t): 23(2}7 t)))

72($:t) = f2($)t7§1(m)t)70a ga($,t)),
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and
73(37: t) = f3($1 i, ((l}, t), };"2(3:7 t): 0)

We may now establish:

Theorem 4.1. Suppose hypotheses (H1)}-(H6) hold for (2.1), and
let m denote the associated semiflow on [C}, (R))® x S*. Then if (P1),
(P2) and (P3) hold,  is permanent.

Remark. (i) Figure 4.1 illustrates the invasibility conditions we
require in order to assert that « is permanent.

(ii) Before proving Theorem 4.1, we shall need the following auxiliary
lemma.

Lemma 4.2. Suppose y € C**/2(Qx [0, T]) for some & € (0,1) and
T-periodic in t and that d > 0. Let \ be the principal eigenvalue of
%? —dAd—v(z,t)p=Xp inO2xR
=0 mAO xR

with associated positive T-periodic eigenfunction ¢, and assume X\ < 0.
Suppose for some € € (0,—) that u(z,t) satisfies the differential
inequality

% > dAu + [y(z,t) — elu

fort € [to,t1). Then if, for some k > 0,
u(z,to) > ko(z,to)
for £ € Q, u(z,t) > ke~ Otedt=to)g( 1) for t € [to, t1)-

Proof of Lemma 4.2. Let v(z,t) = ke~(*+e)(t=to)(z, ). Then

{@ — dAu - [y(a,f) - E]u} - {-gfti — 3 — (s, ) - s]v}

ot
N %’g —dAu— [v(z,t) — e]lu - ke~ (A+e)(t—to)

[Ao(z,t) — Ap(z,t) — ed(z, t) + eg(z, t)] > 0.



SPATIAL HETEROGENEITY 159

U3
A
M,
Mg /E} /
.4
Mo, A, .

M,

M;
uy

FIGURE 4.1. The eigenvalue sign conditions (invasibilities) postulated in
(P1)~(P3) of Theorem 4.1 are indicated by the arrows. Notice that there
are 12 such conditions all total: three on M; (the origin), two each on M2, M3
and My (the single species global attractors absent competition), and one each
on Ms, Mg and My (the global attractors for pairwise competition).

The result now follows from a standard comparison theorem for single
reaction-diffusion equations. Compare with [6, Lemma 4.2]. O

Proof of Theorem 4.1. As previously noted, w(S) is acyclic. Conse-
quently, to establish that w(S) is isolated and that W*(M,,)N(X -8) =
@ for n € {1,2,3,4,5,6,7}, we need only to show that M, is isolated
relative to [Cg, (2)]* x S* and that W*(M,)N[(int [C3, (V))*)x 5] = @
for n € {1,2,3,4,5,6,7}. There is a substantial amount of symmetry
to the arguments, and so we will present only representative cases. We
shall show that My is isolated with respect to [C], (22)]® x S* and that
Ws(Ms) N [(int [CE(Q))? x §Y] = @.

Suppose that every neighborhood of My contains a full orbit. Suppose
that the projection (ui(z,t),uz(z,t),us(z,t)) of such an orbit into
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[C3,.()] lies in the ug-axis in a small neighborhood of My. The a-
limit set of this orbit is nonempty and cannot intersect My, since My is
a global attractor. So if every neighborhood of My contains a full orbit,
it must be the case that along the projection (u1(z,t), uz(z,t), us(z,t))
of such an orbit into [C}, (2)]® that u(z,t) > 0forz € Qand t e R
or ug(z,t) >0forz € Qand t € R.

We now show that such an orbit exists from every sufficiently small
neighborhood U of My. With no loss of generality, let us suppose that
ug(z,t) > 0 for £ € Q and ¢t € R. Consider the equation

%uf— = daAug + ug fo(z, 1, u1, uz, u3).
By (P2), poa in (4.3) is negative. Let o > 0 be given. The uniform
continuity of 43 on © x R implies that there is a § > 0 so that if
[t — t2| < 4, |Ga(z,t1) — Ga(z, t2)| < 0/2 for all z € Q. Let U be a -
neighborhood of My in [C}(€2)])3 x S, where v < ¢/2 and 1 is also small
enough so that |P;, — P,,| < < implies that |¢; — £2| can be assumed
less than d. If {(ui(z,?),ua(z,t),us(z,t), B;) : t € R} is a full orbit
in U, then for each ¢ there is a f so that ||(u1(z,t), uz(, t), ua(x,t)) —
(0,0, @3(z,))llicr @y + [Pt — Pil < 9. So we can assume f is such that
|t — ¢ < & and hence [|(0,0, 3(x,t)) = (0,0, @a(x, ?)|l;o1 @y < /2 So
[[(u1(=, 1), ua(=, 1), us(, 1) — (0,0, 8a(, )2 myps < ¥+0/2 < 0. Now
let € € (0, —p23). Choose o > 0 (and hence choose v > 0) small enough
so that ||(u1(z,t), ua(z, t), us(z,t)) — (0,0, ﬂ3(m,t))||{cl(§)]3 < o for all
t € R implies | fo(z, t, ui(z, t), ua(z, t), us(z, t))— fa(z, t, 0,0, @3(z, t))| <
¢ for all z € Q and t € R. Consequently, if U is a y-neighborhood of
My in [CE ()2 x S* and {((ui(z,t), u2(z,t),us(z,t)),P) : t e R} is a
full orbit contained in U,
Oug
5 2 > dolAug + [fga(:l:,t) — €lug

for all ¢t. Fix to € R. Lemma 4.2 implies that up(z, t) > ke~ (#33+e)(t=to)
#(z,t) for t > to, where ¢(z,t) is a positive T-periodic eigenfunction
for (4.3) with ¢,j = 2,3 and k > 0 such that wy(z,t0) > ké(z,to) in .
Since pos + € < 0, uz is not bounded in ¢. It now follows that My is
isolated in [C3,.()]% x S*.

Suppose now that there exists (u,P;) € WS5(M;s) with (u,P,) €
int [C3, ()] x S'. Then w((u, P:)) # ¢ and w((u, Pr)) C Ms. So there
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exists (v, P;) € w((u, Pr)) such that (v,P;) € Ms. Then there exists
tp, — 00 88 n — 0o so that (¢(u, 7,7 + tn), Pr4t,) — ((v1,v2,0), P)
as n — co. Now (v,P;) € Ms implies that vi(z) < #i(z,7) and
vo(z) < Ez(:ﬂ,’f‘). By (P3), we know Ji3 < 0, where ji3 is as in (4.5). Let

€ € (0,—Ji3). Choose v > 0 so that fa(z,, @ (z, £) +, uz(z, £)+7,7) >
fa(z, b, 11 (z, t), ua(z, t),0) — € for (z,t) € O x R.

We claim that, for sufficiently large n, we must have

&1(u, T, T+t (@) < (T, T+ ) + /2
G2(u, 7, T+ t)(z) < gg(:c,'r +ta) + /2

¢3(’LL,T,T + tn)(z) < ’7/2

on Q, where ¢(u, 7, T+tn) = (¢1 (u, T, T+tn), d2(u, T, T+tn), da(u, 7,7+
tn)). Otherwise, we obtain a subsequence of times ¢, (where we relabel
if need be) and a corresponding sequence of points {z,} C Q so that
one of the three inequalities fails at z,. Without loss of generality,
assume

G1(uy Ty T+ t)(@n) = U1(Tn, T+ ta) + /2

for all n. We may assume z, — Z. We have that ¢, (u, 7,7 +1%,)(zs) =
v1(Z) as n — oo. Since Pryy, = Py, 41(Tn, T + tn) — 41(Z, 7). Hence,
v1(Z) > 41(Z,7) + /2, a contradiction which establishes our claim. As
a consequence, for each large n, there must be an interval (0,d,) so
that

O1(u, T, T H ) (2) < Uz, T+ E+ ) +y
(4.6) G2(u, 7,7+t +0)(2) < ua(z, T+ 4 E0) + 7
G3(u, T, T+t tn)(T) <7

on Q for ¢t € (0,6,). Let wa(z,t) = d3(u, 7,7 + t + t;)(x). Then by
(H4) and the choice of 4,

8 ~

S 2 dadws + wslfa(a, ) ]

for t € (r+ tn, 7+ ty + 0,). Moreover, this inequality continues to
hold so long as (4.6) does. Lemma 4.2 implies that ws(z,t) grows
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exponentially in ¢ (with order ~(lis + €)). Therefore, there must be a
time ¢/, > t, so that one of the inequalities of (4.6) fails when ¢ = ¢/, —t,.
Hence the limit of w((u,P;),t,) as n — oo is not in Ms, contrary
to our assumption. So W¥(M;) N (int [CF, ()]® x S*) = @. The
Hale-Waltman acyclicity theorem may now be invoked to guarantee
the permanence of .

5. Globally attracting componentwise positive periodic so-
lutions for two species competition models. In the preceding
sections our examination of the asymptotics of the semiflow 7 associ-
ated with (2.1) when one of the species u;,ug,us is absent led us to
consider two-species competition systems. We established by means of
the compressivity theory of Hess and Lazer [14, 15] combined with
our construction of the semiflow 7 that the w-limit set of the restricted
semiflow is contained within a periodically varying family of order in-
tervals in [C3,(Q)]2. This observation allowed us to identify “worst
case” competition scenarios. A crucial ingredient in a determination
that 7 is permanent is that the absent species will grow when intro-
duced at a low density under such “worst case” competition scenarios.
This is the content of (P3), in light of Lemma 4.2. In the biological
literature, conditions which permit an absent species to grow when it
is introduced at a low density are called “invasibility” conditions.

Of course, the “nicest” possible situation arises when the periodically
varying order interval in [C}, (2)]? collapses to a periodic steady-state,
since in such a case we do not need to overestimate the degree of
competition to get a “clean” invasibility condition. As a consequence,
the question arises of what conditions must be imposed on two-species
subsystems, all of which of are of the form (3.3), in order to get a
unique globally attracting componentwise positive periodic orbit in
each “face.” An answer for the special case of (3.3) when Dy = D, =1
and
f(z,t,u,w) = a(t) — bu — cw

(5.1) g(z, t,u,w) = d(t) — ew — fw

is given in [14, p. 122]. The idea is to find conditions on a(t),d(t), b, c, e
and f sufficient to guarantee that (3.3)-(5.1) is compressive and that

any componentwise positive periodic orbit of (3.3)-(5.1) is locally
asymptotically stable. The theory of periodic parabolic boundary value
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problems [14] then guarantees that there can be just one such orbit.
Sufficient conditions for the asymptotic stability are available in the
work of Fan and Leung [10]. However, the results of [10], as stated, are
not applicable to (3.3) in its full generality since they do not allow for
spatial heterogeneity. A careful examination of the proof in [10] shows
that nevertheless the arguments can be readily modified to account for
spatial heterogeneity by replacing expressions of a form such as

sup F(t,u(z,t),w(z,t)) with sup F(z,t,u(z,t), w(z, t)).

€ €

T T
t€[0,T) te[0,T]

Consequently, we have the following stability result.

Theorem 5.1. Consider the system of reaction-diffusion equations

o
——-—61—1%—1- = o1Aw; +w [a(z, t)+ri(z, t, wi, wa))
in Q x (0, 00)
(5.2) 6’61)2
5 = oo Awy+wsd(z, t)+ra(z, t, wy, we)]
wr =0=wy on I x {0,00).
Assume:

(i) a,d € C**/2(QA x R) for some a € (0,1) and a,d are T-periodic
in t.
(ii) ri(z, t, w1, w2) is continuous on 0 x R x RZ fori=1,2.
(iii) For each (wy,ws) € R%, hi(z,t) = ri(z,t, w1, w2) € C*/2(Q x
R) for some a € (0,1) and T-periodic in t.

(iv) The partial derivatives of r; with respect to (w1, wz) are contin-
uous in Q x R x R3 with r;/0w; < 0 for (z,t,w;,w;) € Ax Rx R2,
ij=1,2.

Let (wy(z,t), w2(z,t)) be a componentwise positive T-periodic solu-
tion of (5.2). Then if

sup xR wi(z, t)|(0r;/w;)(z, t, w1 (z, t), wa(z,t))]
(=t &x wj(‘”?t)[(arj/awj)(w’t’wl(x’t)iw2(x’ t))]

in wi(z,t) |(Ori/Ow;)(z, t, wi(z, t), wa(z, t))|
(zt)eaxR w;(z,t) [(Or;/0w;) (2, t, wy (z, t), we(z, t))|

< o0

(5.3)

<
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for each 1 <1, j < 2,13 7, the solution (wy,ws) is locally asymptoti-
cally stable.

Note that (3.3) fits into this framework with v = w;, w = wy,
o; = D;, a(z,t) = f(z,t,0,0), d(z,t) = ¢(=,t,0,0), r1(z,t, w1, w2) =
f((l),t,wl,’l.U2) - f(w,t,0,0) and T?-(w:t1'w1vw2) = g(.’c,t,wl,wz) -
9(z,t,0,0). Note also that when Theorem 5.1 holds in addition to
(P1)-(P3), Ms, Mg and My in the proof of Theorem 4.1 reduce to peri-
odic orbits (for instance Ms becomes {((u1(z,T), v2(z,7),0),P;) : 7 €

Q,7 > 0}) and (P3) reduces to the invasibility of each species along the
pertinent periodic orbit. As a consequence, a closer examination of the
condition (5.3) when the system (5.2) is compressive seems warranted.
‘We shall devote the remainder of this article to such an examination in
the particular but illustrative case of T-periodic Lotka-Volterra inter-
actions, where

(5.4) ri(z, t, w1, we) = ~[ai(z, t)w; + By (z, t)wa]

and

oz, t, w1, w2) = —[Ba(z, t)wy + a2(z, t)ws).

Here a;(z,t) > 0 represents intraspecific competition or self-regulation
and G;(z,t) > 0 interspecific competition.

In light of the preceding sections, compressivity of (5.2)-(5.4) holds
provided the principal eigenvalues for four particular periodic-parabolic
differential operators are negative. Namely, we first require p, < 0 and
ta < 0 where p, and pg represent the principal eigenvalues of the op-
erators 0; — 01A — a(z,t) and §; — 02 — d(z,t), respectively, each
operator subject to homogeneous Dirichlet boundary data. A conse-
quence of this first pair of eigenvalue sign conditions is the existence of
unique, positive and T-periodic w} and wj satisfying

6 *
g;l = 018w} + wila(z,t) — a1 (z, t)wi)
aw; * * »
el ooAw; + wild(z,t) — as(z, t)ws).

Equations (5.2)~(5.4) are compressive if now, in addition, fta—p,w; <0
and pg—gwy < 0 where Ha—pywy and Hd—paw] denote the principal
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eigenvalues of the operators 8; — 01 A — (a(z,t) — By (z, t)ws(z,t)) and
8; — o9 — (d(z, t) — Ba(z, t)wi (z, ), respectively, each operator again
subject to homogeneous Dirichlet boundary data.

Suppose now that p, < 0, g < 0, pa—pgw; < 0 and pg-pguw; <0
and that (wi,wz) is a componentwise positive T-periodic solution
to (5.2)-(5.4). Upper-lower solution arguments for single reaction
diffusion equations guarantee that w; < wj and ws < wj, while
upper-lower solution arguments for competitive systems (see [9, 14],
for example) guarantee that

wy > Wi« and wo > Wo,,

where wy4 and ws, are the unique positive T-periodic solutions of

(5.5)

% = o1Awy + wy[a(z,t) — a1z, t)wy — Bi(z, t)ws (,1)]
and
(5.6)

%‘;3 = goAwy + weld(z,t) — fa(z, t)wi (z,t) — az(z, t)ws),

respectively, whose existence is guaranteed by the negativity of ps—p, w;
and pg-g,w;. The strong maximum principle [21] now guarantees that,
for any such (wy,ws),

w w wi

(5.7) a<—<—<—L <k
Wy () W2

and
w w wa

(5.8) < — <22 < ky

wy wi Wi

on 2 x [0, T}, where ¢; and k; are positive constants, ¢ = 1,2. Condition
(5.3) for (w1, ws) is the assertion that

wi(z,t) Pa(z,t) ) wi(z, t) ai(z,t)

tg[%f%"] ’LU2($, t) ag(.’l),t) té’:[%%,} 'LUQ((E, t) ,81((U,t)

(5.9)
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and that

wa(z,t) B1(z,t) . wa(z,t) az(z, t)

téu[%?z‘] wy(z,t) ay(z,t) tez[%,s'?l’l wy(z,t) Bo(z,t)

(5.10)

In light of (5.7) and (5.8), (5.9) and (5.10) hold provided
(5.11)

'U)I((B,t) . ﬂ2($’t) . wl*(w,t) . inf al(:z:,t)
wo.(z, as(z,t e wi(xz,t 1] xz,t
tg[%%‘] 2*( ) ) tg[%?l’] 2( ) ) tg[O,T] 2( y ) téz[O,T] ﬂl( ’ )
and
(56.12)
sup wé‘(*,t) sup ,uui: t) < inf 'U‘Jz.,(;‘ﬁ,t) in uz\.b b}
ze Wi1(T,t) zeq ai(z,t) z€Q  wi(z,t) zeﬂ ﬂg(.’B t)’
te(0,T) t€(0,T) te(0,T] t€[0,T

We may now employ (5.11) and (5.12) to obtain computable condi-
tions on the coefficients of (5.2)—(5.4) which guarantee that any compo-
nentwise positive T-periodic solution of (5.2)-(5.4) satisfies (5.3). By
[14, Lemma 15.7], Ha~pyw; and pd_ﬁgw; are continuous in their argu-
ments. Consequently, since w} and w2 do not depend on B; and ﬁg,

1 N/ o v ANy AN
uucxc Wlll uo /Jl \vb, b] aiiu ,LJ2 \.b, b} bxua,u cuuugu DU bllda!; I»"a-ﬂ” - \ U

and fig_pgy; < 0. Moreover, if Bi(z,t) < BY(2, 1), pa—pruwy < ,ua__ﬂgw;
and wy, > w?,, where w), is the solution of (5.5) corresponding to
A2(z,t) and, if Ba(z,t) < B3(z,t), pd-paw; < Pa-pgw; and wa. > wd,,
where w), is the solution of (5.6) corresponding to ,Bg(a: t). So now fix
B? and B3. Then, for any Bi(z,t) < A(z,t) and Pa(z,t) < B3(z,t), we
have (viewing oi,a(z,t), d(z,t), a:i(z,t) as fixed)

’U)?* wl* < w1 _’l_Ui < _’lﬁo]:'

w} wz wa wg,, wy,

So (5.11)-(5.12) (and thus (5.3)) holds for any componentwise positive
T-periodic solution of (5.2)—(5.4) so long as Bi(z,t) and Ba(z,t) are
small enough so that

(5.13)

* 0
sup wl(mvt) . su ﬁ?(m’t) < i wlt(wvt) in al(z t)

e wg*(m,t) zeQ ag(m,t) z€N w;(m,t) zeg ﬁl(fb’ t)
t€l0,T] te[0,7) te(0,T)
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w%(m:t) su ﬁl( T, ) inf 'wz*("" t) in az(:L‘ t)

z Lzt z ai(z,t €N W t xeﬂ t
te{%qmwl( )te[%’n} a1(z,t) ) o wi(z,t) 2 ﬁz(w)

Summarizing, we have the following result.

Corollary 5.2. Consider (5.2) with 11 and ro as given in (5.4).
Suppose g < 0 and pg < 0, and let wi and w; denote the unique
positive, T-periodic in time solutions to

0
—Bﬂtl. = g1 Awy + wl[a(m, t) - (x,t)wl]
0
_-6,‘2“,2 = gpAwy + W2[d(wa t) - az(IE,t)'UJ2]

in O x R with wf = 0 = w} on 00 x R. Let #(z,t) and B3 (z,t) be
positive, T-pe’rz’odz'c in time and such that pg_pgo,s <0 and py_ g,y

0, and let w3, and wd, denote the unique posztwe T-periodic in tzme
solutions to

15

-g-u-t-l = 018w, + wifa(x, t) — o (z, )w; — BY(z, t)wh(z, 1))
o *

-;”72 = apAwy + wald(z, t) — BO(z, )w(z,t) — aa(w, t)ws]

in Q@ x R with v, = 0 = wd, on 80 x R. Then any component-
wise positive T-periodic in time solution to (5.2) and (5.4) is locally
asymptotically stable so long as Bi(z,t) < F2(z,t) for i = 1,2 and
(5.13)—(5.14) holds.

Corollary 5.2 has an immediate biological interpretation. Namely, the
two species competitive interaction modeled by (5.2) and (5.4) tends
over time to a periodic fluctuation (which remains positive in both
species’ densities) so long as the interspecific competition (as measured
by 41 and () is weak in comparison to self-regulation (as measured by
a1 and az). Conditions (5.13) and (5.14) do allow for temporal and
spatial variation in the interaction parameters of the system. However,
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they impose a uniform upper bound on such variation. It would be
of interest to replace (5.13) and (5.14) with conditions formulated in
terms of integrals indicating a bound on the interaction parameters in
some average sense. If such were the case, it would be possible to allow
larger pointwise variations in the inter- and intraspecific interaction
terms and still have the two species competition tend over time to
a componentwise positive periodic fluctuation in the densities of the
species in question. More generally, our formulation of permanence
for (2.1) in terms of the eigenvalue sign conditions (P1)-(P3), i.e.,
invasibility conditions, raises the question of how temporal periodicity
and spatial heterogeneity interact to mediate coexistence. In attacking
such a problem, one is quickly led to analyze the relative contributions
of space and time to eigenvalues of the form p,(, ,), where g : OxR —
R is T-periodic in time. There is a valuable initial investigation of this
topic in [14], but much more research is needed if the interplay between
temporal and spatial effects is to be thoroughly understood.
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